Mumps in the United States Background and Epidemiology

Albert Barskey, MPH
Division of Viral Diseases, NCIRD, CDC

ACIP Meeting

February 23, 2012

Outline

- Introduction
- History
-Pre-vaccine Era (1917-1967)
- Vaccine Implementation (1968-1982)
-Mumps Resurgence (1983-1992)
-First National Outbreak (1993-2008)
-Second National Outbreak (2009-2011)
- Recent mumps vaccine performance
- Summary

Mumps Symptoms

- Acute, viral illness that can present with -Classic:
- Parotitis (60-70\%)
- Orchitis (30\% in post-pubertal males)
- Fever

- Other:

- Non-specific respiratory symptoms (40-50\%)
- Other salivary gland swelling (10\%)
- Complications:
- Deafness (4\%)
- Aseptic meningitis (1-15\%)
- Encephalitis (0.03\%)
- Asymptomatic (30\%)

Mumps Vaccine in the United States

- Licensed in 1967
- Composition
- Live, attenuated mumps virus
- Jeryl Lynn strain
- Genotype A
- Effectiveness estimates ${ }^{1}$
-1 Dose: ~77\% (49-88\%)
-2 Doses: ~88\% (66-95\%)
${ }^{1}$ Schaffzin JK et al. Pediatrics. 2007;120:e862-8, Marin M et al. Vaccine. 2008;26:3601-7, Cohen C et al. Emerg Infect Dis. 2007;13:12-7, Deeks SL et al. CMAJ. 2011;183:1014-20, Dominguez A et al. Vaccine.
2010;28:3567-70, Sartorius B et al. Euro Surveill. 2005;10:191-3, Harling R et al. Vaccine. 2005;23:4070-4

Reported Characteristics of Mumps in Pre-vaccine Era

- Peak incidence in 5-9 year-olds ${ }^{1}$
- 90% of children infected by age 14^{1}
- Most cases in late winter-spring²
- No remarkable geographic patterns ${ }^{3}$
- Most adult disease was associated with outbreaks in the military ${ }^{2,3}$
- Significant cause of aseptic meningitis ${ }^{4}$

[^0]
Mumps Incidence in the Pre-vaccine Era 1922-1967

Mumps, United States, Vaccine Era 1968-2011

Period of the Resurgence, 1983-1992

Observations on the Period of the Resurgence

- 1986-87 resurgence attributed to an increase in susceptibility among older children who
- had not been vaccinated,
- but who had been spared previous disease exposure by declining mumps incidence ${ }^{1}$
- During 1988-92, outbreaks associated with 1-dose vaccine failure were first reported ${ }^{2-4}$

[^1]
1989 ACIP MMR Recommendation ${ }^{1}$

- In December 1989, ACIP recommended a second dose of measles vaccine for improved measles control.
- Suggested it be administered as MMR, stating that "Mumps revaccination is particularly important."
- Effectively, this was a recommendation for a second dose of mumps vaccine

Observations on the First National Outbreak

- First multi-state outbreak attributable to 2dose vaccine failure
- Young adults 18-24 years of age were most affected
- Most were college students
- Almost all had had 2 doses of vaccine
- Most had received them >10 years previously
- Dormitory living and freshman class status were risks
- Geographically focused
- Sudden onset and sudden decline of cases

2006 ACIP Mumps Recommendation ${ }^{1}$

- Formal recommendation for 2 doses of a mumps-containing vaccine for
-School-aged children (grades K-12)
-Adults in high risk groups
- Healthcare facility workers
- International travelers
- Students at post-high school educational institutions

Period of the Second National Outbreak, 2009-2011

Observations on the Second National Outbreak

- 97\% of cases occurred within an Orthodox Jewish community
- Adolescent (13-17 years of age) males were the most affected group
- Approximately 90% had 2 doses of vaccine
- Unique schools settings and large households were conducive to mumps transmission
- Boys attend yeshiva, beginning ~age 12
- "Chavrusa" style learning
- Prolonged, intense exposures likely overcame protection afforded by the vaccine

Guam 2010 Mumps Outbreak

- Middle school children (9-14 years of age) represented the most affected age group
- Among kindergarteners through middle school children attending public school, $\geq 95 \%$ had received 2 doses of MMR

Recent Mumps Vaccine Performance

Postlicensure Vaccine Effectiveness Comparison of 1 vs 2 Doses

Outbreak Studied	Age Group	$\begin{gathered} 1 \\ \text { Dose } \end{gathered}$	$\begin{gathered} 2 \\ \text { Doses } \end{gathered}$	Reference
Canada outbreak 2009/2010	$\begin{gathered} 17-20 \\ 14-18 \\ 6-15 \end{gathered}$	$\begin{aligned} & 77 \\ & 49 \\ & 77 \end{aligned}$	$\begin{aligned} & 88 \\ & 66 \\ & 84 \end{aligned}$	Deeks et al., CMAJ 2011
Spain outbreaks 2005/2007	4-12	85	89	Dominguez et al., Vaccine 2010
US (Iowa) outbreak 2006	$\begin{aligned} & 18-25 \\ & 18-25 \end{aligned}$	$\begin{aligned} & 82 \\ & 64 \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \end{aligned}$	Marin et al., Vaccine 2008
UK outbreak 2004/2005	2-12	88	95*	Cohen et al., EID 2007
Small outbreak US 2005	-7-49	80	92	Schaffzin et al., Pediatrics 2007
Small outbreak Sweden 2004	5-24	65	91	Sartorius et al., Euro Surveill 2005
UK outbreak 1998/1999	1-18	64	88	Harling et al., Vaccine 2005
Median		77	88	
Range		49-88	66-95	

[^2]Age-specific Vaccine Effectiveness Estimates for 1 and 2 Doses of MMR Vaccine, UK, 2004-05 Outbreak

Mumps Vaccine Duration of Immunity - 2 Doses

- Correlates of protection are not well defined
- Seropositivity declines over time ${ }^{1}$
- Neutralizing antibody titers decline over time ${ }^{2}$
- Cellular immunity declines less than seropositivity over time (if at all) ${ }^{3}$

[^3]
More Than Waning Immunity At Play in Recent Outbreaks

- Waning immunity does not explain
-Geographic focal nature
-Oldest vaccinated cohorts not always most affected
- Intense exposure settings account for these features

Summary of Mumps Disease in the United States

- Prior to use of the mumps vaccine, mumps was a universal disease of childhood
- Use of the mumps vaccine reduced disease levels >95\%
- Current 2-dose schedule is sufficient for mumps control in the general population, but outbreaks can occur in well vaccinated communities
- Intense exposure settings and waning immunity appear to be risk factors for secondary vaccine failure

[^0]: ${ }^{1}$ Collins SD. Pub Health Rep. 1929; 44:763-826
 ${ }^{2}$ Gordon JE. Am J Med Sci. 1940; 200:412-28
 ${ }^{3}$ Gordon JE. Am J Med Sci. 1949; 218:338-59
 ${ }^{4}$ USDHEW. Mumps Surveillance: Report No. 1. 1968

[^1]: ${ }^{1}$ Cochi SL, et al. Am J Dis Child. 1988; 142:499-507
 ${ }^{2}$ Hersh BS, et al. J Pediatr. 1991; 119:187-93
 ${ }^{3}$ Cheeck JE, et al. Arch Pediatr Adolesc Med. 1995; 149:774-8
 ${ }^{4}$ Briss PA, et al. J Infect Dis. 1994; 169:77-82

[^2]: * Statistically significant 1 dose 87.8% (83.1\%-91.1\%) and 2 doses 94.6\% (92.9\%-85.9\%)

[^3]: ${ }^{1}$ Davidkin I et al. J Infect Dis. 2008;197:950-6
 ${ }^{2}$ LeBaron CW et al. J Infect Dis. 2009;199:552-60
 ${ }^{3}$ Jokinen S et al. J Infect Dis. 2007;196:861-7

